Force-Induced Calcium Concentration Change and Focal Adhesion Translocation: Effects of Force Amplitude and Frequency
نویسنده
چکیده
Vascular endothelial cells rapidly sense and transduce external forces into biological signals through a process known as mechanotransduction. Numerous biological processes are involved in mechanotransduction, including calcium signaling and activation of focal adhesion sites, but little is known about how cells initially sense changes in the external mechanical environment. In order to examine the rapid mechanosensing thresholds involved with mechanotransduction, calcium concentration changes and focal adhesion site translocations were observed while applying nN-level magnetic trap shear forces to the cell apex via integrin-linked magnetic beads. Both biological responses were monitored with fluorescent microscopy by labeling intracellular calcium with Fluo-3 calcium dye and by infecting cells with GFP-paxillin fusion proteins. Monitoring calcium concentration changes proved unreliable for determining mechanotransduction thresholds, while a non-graded, time dependent (minutes) steady load threshold for mechanotransduction was established between 0.90 and 1.45 nN for focal adhesion site activation. Activation was greatest near the point of forcing (< 7.5 pm), indicating that shear forces imposed on the apical cell membrane transmit nonuniformly to the basal cell surface and that focal adhesion sites may function as individual mechanosensors responding to local levels of force. Results from a continuum, viscoelastic finite element model of magnetocytometry that represented experimental focal adhesion attachments provided support for a non-uniform force transmission to basal surface focal adhesion sites. Frequency variation between 0.1 and 50 Hz altered focal adhesion translocation and resulted in a biphasic response minimized at 1.0 Hz. Furthermore, applying the tyrosine kinase inhibitors genistein and PP2, a specific Src family kinase inhibitor, resulted in differential effects on force-induced translocation. These results highlight the mutual importance of force transmission and biochemical signaling in focal adhesion mechanotransduction. Principal Thesis Supervisor: Roger D. Kamm Title: Professor of Mechanical Engineering Force-induced calcium concentration change and focal adhesion translocation: Effects of force amplitude and frequency Chapter
منابع مشابه
Force-induced focal adhesion translocation: effects of force amplitude and frequency.
Vascular endothelial cells rapidly transduce local mechanical forces into biological signals through numerous processes including the activation of focal adhesion sites. To examine the mechanosensing capabilities of these adhesion sites, focal adhesion translocation was monitored over the course of 5 min with GFP-paxillin while applying nN-level magnetic trap shear forces to the cell apex via i...
متن کاملCalcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching.
The actin-dependent sensory and response elements of stromal cells that are involved in mechanical signal transduction are poorly understood. To study mechanotransduction we have described previously a collagen-magnetic bead model in which application of well-defined forces to integrins induces an immediate (< 1 second) calcium influx. In this report we used the model to determine the role of c...
متن کاملModeling of the intermolecular Force-Induced Adhesion in Freestanding Nanostructures Made of Nano-beams
Among the intermolecular interactions, the Casimir and van der Waals forces are the most important forces that highly affect the behavior of nanostructures. This paper studies the effect of such forces on the adhesion of cantilever freestanding nanostructures. The nanostructures are made of a freestanding nano-beam which is suspended between two upper and lower conductive surfaces. The linear s...
متن کاملمعرفی روش استفاده از سیگنال مکانومیوگرام در ارزیابی عملکرد عضلات
Background and aims Recordings of electrical activity in the muscle and surface electromyography (EMG) have been widely used in the field of applied physiology. In parallel to recording of the EMG, the detectable low-frequency vibration signal generated by the skeletal muscle has been known and well documented. As the nature of the signal has been progressively revealed, the term of mec...
متن کاملEffects of Fluid Environment Properties on the Nonlinear Vibrations of AFM Piezoelectric Microcantilevers
Nowadays, atomic-force microscopy plays a significant role in nanoscience and nanotechnology, and is widely used for direct measurement at atomic scale and scanning the sample surfaces. In tapping mode, the microcantilever of atomic-force microscope is excited at resonance frequency. Therefore, it is important to study its resonance. Moreover, atomic-force microscopes can be operated in fluid e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014